Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli.
نویسندگان
چکیده
Ultraviolet light (UV) inhibits DNA replication in Eschericia coli and induces the SOS response, a set of survival-enhancing phenotypes due to derepression of DNA damage-inducible genes, including recA and umuDC. Recovery of DNA synthesis after UV irradiation ("induced replisome reactivation," or IRR) is an SOS function requiring RecA protein and postirradiation synthesis of additional protein(s), but this recovery does not require UmuDC protein [Khidhir, M. A., Casaregola, S. & Holland, I. B. (1985) Mol. Gen. Genet. 199, 133-140]. IRR occurs in strains carrying either recA718 (which does not reduce recombination, SOS inducibility, or UV mutagenesis) or umuC36 (which eliminates UV mutability), but not in recA718 umuC36 double mutants. In recA430 mutant strains, IRR does not occur whether or not functional UmuDC protein is present. IRR occurs in lexA-(Ind-) (SOS noninducible) strains if they carry an operator-constitutive recA allele and are allowed to synthesize proteins after irradiation. We conclude the following: (i) that UmuDC protein corrects or complements a defect in the ability of RecA718 protein (but not of RecA430 protein) to promote IRR and (ii) that in lexA(Ind-) mutant strains, IRR requires amplification of RecA+ protein (but not of any other LexA-repressed protein) plus post-UV synthesis of at least one other protein not controlled by LexA protein. We discuss the results in relation to the essential, but unidentified, roles of RecA and UmuDC proteins in UV mutagenesis.
منابع مشابه
recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.
Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA.
متن کاملInducible UV repair potential of Pseudomonas aeruginosa PAO.
Pseudomonas aeruginosa PAO lacks UV-inducible Weigle reactivation and Weigle mutagenesis of UV-damaged bacteriophages. This lack of UV-inducible, error-prone DNA repair appears to be due to the absence of efficiently expressed umuDC-like genes in this species. When the P. aeruginosa recA gene is introduced into a recA(Def) mutant of Escherichia coli K12, the P. aeruginosa recA gene product is c...
متن کاملInvolvement of the cgtA gene function in stimulation of DNA repair in Escherichia coli and Vibrio harveyi.
CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacte...
متن کاملAmplified RNase H activity in Escherichia coli B/r increases sensitivity to ultraviolet radiation.
Strains of E. coli B/r transformed with the plasmid pSK760 were found to be sensitized to inactivation by ultraviolet radiation (UV) and to have elevated levels of RNase H activity. Strains transformed with the carrier vector pBR322 or the plasmid pSK762C derived from pSK760 but with an inactivated rnh gene were not sensitized. UV-inactivation data for strains having known defects in DNA repair...
متن کاملA dnaN Plasmid Shuffle Strain for Rapid In Vivo Analysis of Mutant Escherichia coli β Clamps Provides Insight Into the Role of Clamp in umuDC-Mediated Cold Sensitivity
The E. coli umuDC gene products participate in two temporally distinct roles: UmuD2C acts in a DNA damage checkpoint control, while UmuD'2C, also known as DNA polymerase V (Pol V), catalyzes replication past DNA lesions via a process termed translesion DNA synthesis. These different roles of the umuDC gene products are managed in part by the dnaN-encoded β sliding clamp protein. Co-overexpressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 19 شماره
صفحات -
تاریخ انتشار 1987